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ARTICLE INFO ABSTRACT

Keywords: Environmental DNA (eDNA) has emerged as a powerful tool for swiftly assessing coral reef ecosystems, partic-

eDNA ularly for detecting fish diversity. This study focused on employing eDNA to investigate fish biodiversity and its

Reef fish . functional traits in the Karimunjawa National Park (KNP), Indonesia. The use of eDNA and then validating with

izzof;;elviﬁglsl;ncmg visual census results to reveal fish diversity was implemented across four management zones within the park (i.
e., the core zone at Taka Malang, the protection zone at Menjangan Kecil Island, the tourism zone at Cilik Island,
and an open access location at Genting Island). Sampling involved collecting one liter of seawater per site,
filtering, and processing to target the 12S locus, and then sequencing using the MinION machine (Oxford
nanopore). The eDNA results show higher species diversity in the tourism zone compared to the core, protection,
and open access zones. However, beta diversity analysis revealed no significant differences in community
composition between the zones. Moreover, this research revealed 147 species belonging to 31 families, with 60 %
species and 30 % families identified solely through eDNA, that were not covered by the visual census. This
research also reveals that eDNA is an excellent approach to detecting functional trait diversity, including envi-
ronment preference and migratory and nocturnal behavior. This research underscores the potential of eDNA for
evaluating fish diversity in KNP, proposing a combined eDNA and visual census approach to fill existing gaps in
biodiversity assessment. Such integration promises to bolster conservation efforts within Marine Protection Areas
like KNP.

1. Introduction ecosystems (Wilson and Green, 2009; Madduppa et al., 2013; Putra

et al., 2015; Nadia et al., 2018; Yuliana et al., 2020; Ulfah et al., 2021).

A Marine Protected Area (MPA) is an established area to protect
ecosystem sustainability and ecological function (Edgar et al., 2014).
However, ensuring the effectiveness of an MPA is needed to look after
the healthy ecosystem, including monitoring activities (Dunham et al.,
2020). MPAs in Indonesia have been monitored to see constituent
ecosystem organisms like fish diversity and abundance as healthy
ecosystem indicators, including monitoring within the coral reef

In addition, comprehensive and accurate management of MPAs is still an
issue today.

One issue lies in the inability of current methods, like visual census,
to detect all types of species to map the functional diversity (various fish
lists to provide their role information on the ecosystems) of all these
species (Aglieri et al., 2021). Monitoring and evaluation methods for
coral reef ecosystems in Indonesia are still carried out conventionally
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using visual census methods (http://coremap.or.id/; Marwayana et al.,
2022). However, the visual census has a weakness in detecting the
complexity of limited taxa. For example, using a visual census requires
expertise in identification, limited time to conduct a survey (needs to be
sunny or daytime) and expensive cost for a survey (Boussarie et al.,
2018; Gold et al., 2021). Alternatively, environmental DNA (eDNA)
methods and technologies can be used to assess marine biodiversity
(Thomsen and Willerslev, 2015), including in the MPA area (Kelly et al.,
2014; Deiner et al., 2017; Gelis et al., 2021). In addition, sampling for
eDNA could be implemented in any condition that may be difficult to
detect by visual census, such as deep-sea (McClenaghan et al., 2020) and
surfzone (Gold et al., 2023). Moreover, eDNA could be potentially used
to give a new identification that was never detected from a visual census
(Polanco Fernandez et al., 2021; Muenzel et al., 2024).

eDNA is a method to detect various living organisms (prokaryotic or
eukaryotic) that leave traces of their DNA through cells, skin, or any part
of the living body itself that contains genetic material (Pilliod et al.,
2013). These DNA traces are left in the environment, such as soil, water,
and sediment (Williams et al., 2016; Ruppert et al., 2019). eDNA also
does not cause environmental damage because it will only take envi-
ronmental materials such as water without touching organisms con-
tained in that environment (Sahu et al., 2022). eDNA has been widely
used to identify the presence of various species (Hunter et al., 2018;
Ragot and Villemur, 2022; Ariza et al., 2023), including reef fish
(DiBattista et al., 2017; Gelis et al., 2021; Gold et al., 2021; Zamani et al.,
2022). Then, several studies also implemented eDNA to survey biodi-
versity in MPA, such as Gold et al. (2021) MPA in the Scorpion State
Marine Reserve off Santa Cruz Island, Gelis et al. (2021) MPA in Lombok
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Island, and Marwayana et al. (2022) MPA in Raja Ampat.

One of the MPAs in Indonesia with high coral reef diversity including
reef fish is Karimunjawa National Park (KNP) (Yuliana et al., 2016).
Karimunjawa National Park (KNP), situated in northern Java (Fig. 1), is
renowned for its rich biodiversity, particularly in coral reef ecosystems
(Campbell et al., 2013; Kennedy et al., 2020). Managed through a zoning
system to promote sustainability (Yuliana et al., 2016), KNP’s moni-
toring primarily relies on visual census assessments (2018; Wijayanto
etal., 2021). However, to comprehensively evaluate the presence of taxa
or species within KNP, a comparative method like eDNA is necessary.
Therefore, this research seeks to evaluate environmental DNA (eDNA)
use and compile a comprehensive taxonomic list for monitoring en-
deavors across KNP, mainly based on zoning systems. The study com-
pares eDNA metabarcoding with visual surveys of fish diversity and
their functional traits conducted within KNP.

2. Materials and methods

This research used one liter of seawater filtered using Sterivex (Gold
et al., 2021) for an eDNA sample, with three samples as replicates for
each site around the Karimunjawa National Park (KNP) as primary data.
Meanwhile, the visual census data were used as secondary data for
comparison. Visual census data were used based on the results report
published by the Karimunjawa National Park Agency (BTNKJ) in 2022.
However, there were differences in timing between eDNA sample
collection and conducting visual census (data retrieved from a report
published by BTNKJ). The eDNA sample collection was conducted in
August 2022, while the visual census data were based on a report
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Fig. 1. Research location to take seawater samples using eDNA method with four locations (each location represents zonation see on map).
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conducted in March 2022.
2.1. Sample collection

In total, four sampling sites consisting of three representative zones
(one site each at the protecting, core, and tourism zones) and one site at
the open access zone from KNP (Fig. 1) were used in this study. One liter
of seawater was taken at the depth of 3-5 m (shallow) around the coral
reef ecosystem by SCUBA diving, and then the seawater was captured
using a water bag (gravity feeding bag). Sampling of one liter of water at
each location was repeated three times. As a result, a total of twelve
samples were collected for this research. The seawater was filtered using
sterivex with pore size of 0.22 pm (MilliporeSigma, Burlington, MA,
USA) (Gold et al., 2021) on the land (homestay) to keep it sterile. Then,
the sterivex filter was pushed using a syringe to ensure the seawater in
the sterivex was removed. After filtration, the sterivex filter was given
2 ml of ATL buffer as preservation and stored in the freezer at —20°C
until further processing (laboratory process).

2.2. eDNA extraction

Sterivex was extracted using the DNAeasy Tissue and Blood Kit
protocol (Qiagen Inc.) to obtain genomic DNA from the sample (gDNA).
The extraction process involved the addition of 720 pL ATL buffer and
80 uL proteinase K into sterivex. Then, Sterivex was placed into the
rotary shaking incubation machine for 12 hours at 56 °C, after which
200 pL. AE buffer was added (Gold et al., 2021). After the incubation
process was carried out, all the liquid in the sterivex was taken using a
syringe into a 1.7 ml tube with a size of 450 uL. Then, the extraction
process was continued by the Qiagen DNAeasy blood and tissue
protocol.

2.3. PCR amplification and MinION library preparation for sequencing

After gDNA was obtained from eDNA samples, PCR amplification
was conducted to obtain a specific DNA locus target (12S) with MiFish-U
for universal fish (Miya et al., 2015), which included a “tail” (short
nucleotide has a function to attach the Native Barcoding Kit during
nanopore sequencing process) in the locus-specific PCR. Forward (5’
TTTCTGTTGGTGCTGATATTGCGCCGGTAAAACTCGTGCCAGC 3’), and
reverse (5 ACTTGCCTGTCGCTCTATCTTCCATAGTGGGGTATCTA
ATCCCGTTTG 3’). The amplification process was carried out for 25
cycles consisting of pre-denaturation at 95°C for 10 minutes, denatur-
ation at 94°C for 30 seconds, annealing at 50°C for 30 seconds, and
extension at 72°C for 1.5 minutes, and final extension at 72°C for
10 minutes.

The PCR amplicon product was sequenced using the Oxford Nano-
pore Technology (ONT) MinION sequencing template. The DNA library
was prepared following the manufacturers’ protocols for Native Bar-
coding Kit 96 V14 (SQK-LSK114). Sequencing was done using the R10.4
flow cell (FLO-MIN112; Oxford Nanopore Technologies) for a total of
24 hours.

2.4. Data analysis

The nanopore signals were basecalled using the MinKNOW software,
provided by Oxford Nanopore Technologies (ONT) and embedded in the
Guppy pipeline, employing a High-Accuracy model. Adapters and
primers were trimmed using Porechop. Then, the process of quality-
checking and filtering from the results of the nucleotide sequences
generated by using NanoPlot 1.40.0 and Nanofilt 2.8.0 (De Coster et al.,
2018). The Phred score of more than 12 or q-12 and read length with a
minimum of 150 and maximum of 200 were filtered for further analysis.
VSEARCH (Rognes et al., 2016) was used to dereplicate, clustered with
de novo, and perform chimera detection. A value of 95 % was set for
clustering the reads or Operational Taxonomic Units (OTUs), accounting
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for a suggested 5 % error rate (Santos et al., 2020).

The in-house reference database has been curated from FishCard
(Gold et al., 2021) and combined with taxon lists from the Visual Census
report from BTNKJ in 2022. However, there were thirteen species from
the visual census report for which no genetic information could be found
(both 12S or genome data or see: Supplementary Material Table 1).
Taxon classification for sequence data identification used BLAST (blastn
algorithm v2.10.1) with minimum threshold values for query coverage
alignment to 90 % (van der Reis et al., 2023) and percentage identity to
90 % (Truelove et al., 2019; Munian et al., 2024). All taxon classification
names were checked in the public database from FishBase and the World
Register of Marine Species (WORM). The output data, including the
identification of taxa for each sequence in the sample processed and read
as a phyloseq object in R using phyloseq (McMurdie and Holmes, 2013).
The Principal Coordinate Analysis (PCoA) plot using the Aitchison dis-
tance, and Permutational Analysis of variance (PERMANOVA) have
been used to see differences in taxa composition between repeat samples
in each zoning in KNP.

Furthermore, only list species from eDNA and visual census results
have been filtered to see functional traits in the FishBase database using
the ’rfishbase’ package in R (Boettiger et al., 2012). Four data param-
eters extracted from the Fishbase database include Environment,
Migratory, Nocturnal, and Tropic preferences (Supplementary Material
Table 2).

3. Results

A total of 3881,590 reads were sequenced from the 12 distinct
barcodes (12 samples) of the genomic library during a 24-hour run,
using a high-accuracy basecalling model. Following the processes of
barcode and primer trimming, filtering, dereplicating, clustering, and
chimera detection, 193,404 reads remained with 23,643 Operational
Taxonomic Units (OTUs) for 12 samples.

The eDNA data comprises 147 fish species, 70 fish genera, 31 fish
families, 18 fish orders, and 2 fish classes after assignment with mini-
mum 90 % identity from blastn. Fifteen families have been found from
Taka Malang (core), and the three most abundant were Pomacentridae
(53.9 %), Spratelloididae (30.3 %), and Apogonidae (7.8 %). There
were seventeen families for Menjangan Kecil (protection), and the three
most abundant were Pomacentridae (38.7 %), Chaetodontidae
(38.6 %), and Spratelloididae (10 %). Then, there were nineteen fam-
ilies for Cilik (tourism), and the three most abundant were Pomacen-
tridae (27.5 %), Spratelloididae (23.5 %), and Chaetodontidae (14.3 %).
Moreover, sixteen families of Genting (open access), and the three most
abundant were Spratelloididae (57.1 %), Pomacentridae (13.3 %), and
Acanthuridae (5.9 %) (Fig. 2).

A comparison of the diversity based on observed and Shannon results
between locations has a variety of results that indicate that Cilik
(tourism) has the highest diversity, followed by Taka Malang (core) and
Genting (open access); then, Menjangan Kecil (protection) has the
lowest diversity (Fig. 3). The different test results from ANOVA of alpha
diversity between locations indicate a significant difference from the
Shannon result (ANOVA-Shannon = 4.308, p-value < 0.05). This dif-
ference was caused by the significant results (p-value < 0.05) from the
Tukey test between Cilik (tourism) and Menjangan Kecil (protection),
both from Shannon and also observed results (Table 1).

Beta diversity from fish community composition between locations
by a Principal Coordinate Analysis (PCoA) plot using the Aitchison
distanceindicated that between locations overlapping each other
(Fig. 4). Moreover, the result from PERMANOVA and Dispersion ho-
mogeneity tests (Betadisper) indicated non-significant differences be-
tween locations (p-value > 0.05) (Table 2).
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Table 1
Alpha diversity difference test from OTUs diversity for each zones using an Analysis of Variance (ANOVA) and Tukey HSD.
ANOVA
F value Pr (>F)
Observed 3.761 0.059
Shannon 4.308 0.044*
Tukey HSD
Zonation Observed Shannon
Diff Lwr Upr P adj Diff Lwr Upr P adj
Open access-Core —1229.0 —6300.7 3842.7 0.863 —0.297 —1.471 0.876 0.847
Protection-Core —3256.6 —8328.4 1815.1 0.245 —0.597 -1.771 0.576 0.415
Tourism-Core 1919.0 —3152.7 6990.7 0.637 0.660 —-0.513 1.834 0.338
Protection-Open access —2027.6 —7099.4 3044.1 0.598 —0.299 —1.473 0.874 0.844
Tourism-Open access 3148.0 —1923.7 8219.7 0.268 0.958 -0.215 2.132 0.114
Tourism-Protection 5175.6 103.9 10247.4 0.045* 1.258 0.084 2.431 0.036*

* Significant value (p-value < 0.05)

Table 2
Beta diversity difference test from community composition based on all ASVs for
each zones using a PERMANOVA and BETADISPER.

adonis PERMANOVA

Df Sum of Sgs R2 F Pr(>F)
Zone 3 62831 0.316 1.2346  0.087
Residual 8 135713 0.683
Total 11 198544 1.000
Multivariate homogeneity of group dispersions test (BETADISPER) with 999
permutations
Df  Sum Sq MeanSq F Pr(>F)
Groups 3 1424 4747 1.895 0.221
Residual 8 2003 2503

3.1. Comparison between eDNA and visual census in detecting fish species
and functional traits

In total eDNA could detect 147 fish species and visual census 153
species from four sites (Fig. 5a or see the detail in Supplementary Ma-
terial Table 3). Visual census had higher species detection than eDNA in
three locations such as Menjangan Kecil (protection zone) with 56
species for eDNA and 81 species for visual census, Cilik (tourism zone)
with 82 species for eDNA and 93 species for visual census and Genting
(open access) with 71 species for eDNA and 82 species for visual census.
Only sites from Taka Malang (core zone) eDNA could detect more spe-
cies (with 71 species) than visual census (with 70 species). Overall,
eDNA could detect 61 species (40 %), the same as the visual census in all
locations. However, both eDNA and visual census can detect unique
species that cannot be detected by each other (85 species for eDNA and
93 species for visual census). Furthermore, eDNA could detect up to
70 % of the family same with visual census in all four locations from this
study (see: Supplementary Material Fig. 1).

The functional traits information from the FishBase database
revealed that this result revealed species of fish from eDNA detection
could get a variety of environment preferences compared to visual
censuses that only detected reef-associated fish. Overall, demersal,
benthopelagic, and pelagic-neritic fish are underrepresented in visual
census data. eDNA could detect two species from Taka Malang (core)
and two species from Cilik (tourism) that have a preferred habitat as
demersal. One species from Cilik (tourism) has a preference for ben-
thopelagic. One species from Taka Malang (Core), one species from
Menjangan Kecil (protection), two species from Cilik (tourism), and two
species from Genting (open access) have been detected as pelagic-neritic
species. In addition, one species from Menjangan Kecil (protection) has
detected bathypelagic fish (Fig. 6).

Species for migratory preference eDNA could not only detect species
that have non-migratory category but also could detect species ocean-
odromous with 3 species from Taka Malang (core), four species from
Menjangan Kecil (protection), six species from Cilik (tourism) and two

species from Genting (open access), and also amphidromous with one
species from Taka Malang (core). Moreover, the visual census also got
migratory preference besides the non-migratory category, which was
oceanodromous: one species from Menjangan Kecil (protection), three
species from Cilik (tourism), and one species from Genting (open ac-
cess). Then, the trophic preference result got both eDNA and visual
census results equal to that of the preferred trophic with three variances:
carnivore, herbivore, and omnivore. However, the unknown preferred
trophic was the highest from eDNA data and visual census data (Fig. 6).

The eDNA results revealed a higher domination of nocturnal fish
than visual census results from all locations except Cilik (tourism). Taka
Malang (core) has seven nocturnal fishes from eDNA and three nocturnal
fishes from the visual census. Menjangan Kecil (protection) has three
nocturnal fishes from eDNA and one nocturnal fish from the visual
census. Cilik (tourism) has only one nocturnal fish from eDNA and four
nocturnal species from the visual census. Furthermore, Genting (open
access) has six nocturnal species from eDNA and one nocturnal species
from the visual census (Fig. 6).

4. Discussion

This study revealed that eDNA has potentially explored compre-
hensive fish biodiversity in coral reef ecosystems. Understanding species
diversity is essential in gaining effective conservation practices, and
management strategies within coral reef ecosystems (Madduppa et al.,
2021). The use of eDNA represents a valuable modern approach to
studying biodiversity across diverse habitats. Several studies have pro-
vided evidence of how the eDNA successfully detects fish diversity in
several coastal ecosystems, such as Coral reef ecosystems in Lombok
Island (Gelis et al., 2021) and Tidung Kecil Island (Zamani et al., 2022),
Mangrove ecosystems in Peninsular Malaysia (Zainal Abidin et al.,
2022), and Seagrass beds in Southern California (Waters et al., 2023).
This study detected 147 fish species from 31 families from four locations
of different representative zones in the Karimunjawa islands through
eDNA in shallow waters from coral reef ecosystems. The result in this
study was higher than that of a dry season in Tidung Island, with only 27
species of 17 families. However, this result was lower than the rainy
season in Tidung Island, with 209 species of 56 families (Zamani et al.,
2022).

Two fish families have always been found in all locations and
dominate the top three relative abundance groups of this eDNA result:
Pomacentridae and Spratelloididae. Damselfishes (Pomacentridae) are a
fish that always inhabit coral reef ecosystems, and this fish presence
could play a significant role in coral reef ecosystems (Ormond et al.,
1996). The presence of damselfish can enhance coral growth by
providing cleaning services and nutrient input caused by feeding algae
(herbivores) that maintain coral reef health from competitors (Holbrook
et al., 2008). The coral reef ecosystems are also beneficial for damselfish
for refuge to avoid their predators (Holbrook and Schmitt, 2002). The
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family from Pomacentridae has also been found in metabarcoding eDNA
conducted by Andriyono et al. (2021) in Palabuhanratu Bay. Further-
more, Spratelloididae is a reef-associated fish (Esmaeili and Echreshavi,
2023), and has been reported to be found in several locations in
Indonesia, such as South Sulawesi (Erftemeijer and Allen, 1993), Lom-
bok (Mahrus et al., 2022), and Seribu Islands (Simanjuntak et al., 2020).

This fish can be used as seafood (Nasution et al., 2019) or as fishing bait
for tuna (Milton et al., 1991).

eDNA has been known as a tool for comprehensive biodiversity
assessment to support conservation efforts (Nguyen et al., 2020) in
Marine Protected Areas (MPAs), especially in this study that focused on
one of the MPA in Indonesia from Karimunjawa National Park (KNP).
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Although this result has a significant difference in alpha-diversity
(Observed and Shannon) between the tourism zone and protection
zone, this result indicated that the tourism zone (Cilik) has a higher
abundance of OTUs than other zones in this study, such as the core zone
(Taka Malang), protection zone (Menjangan Kecil), and open access
(Genting). However, a study from Gelis et al. (2021) in coral reef eco-
systems showed that the core zone has significantly higher reef fish di-
versity than the utility and open access zone in Lombok.

According to a survey by Hartati et al. (2018) and Muhidin et al.
(2022), the highest abundance of invertebrates in the Tourism zone

(including Cilik Island) was Sea Urchins (Family: Diadematidae). The
presence of sea urchins, with their balancing numbers, would be bene-
ficial for healthy coral reef ecosystems due to their behavior of feeding
on algae, thereby reducing potential coral reef competitors and pro-
moting coral growth (McClanahan et al., 1996). The balanced growth of
sea urchins is also affected by the presence of their predators in this area,
such as Labridae (Figueiredo et al., 2005) found in both eDNA and Vi-
sual census, and also Balistidae (Tebbett and Bellwood, 2018) only
found in visual census. This ecological stability in the area has resulted
in coral cover in this region reaching around 60 % in the Tourism area
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(including Cilik Island) under good conditions (Muhidin et al., 2022),
and the good condition of the coral reef ecosystem will sustain biodi-
versity within the region.

The 128 locus to detect fish has been widely used to detect fish di-
versity (Stoeckle et al., 2017; Marwayana et al., 2022; Munian et al.,
2024). However, the in-house reference database information from this
research showed that 12 species from the visual census report in Kar-
imunjawa islands have no sequence information either from 12S or
whole genome information. The quality of eDNA results will be limited
when an inadequate database is possessed (Pascher et al., 2022). In
addition, uncertainties exist concerning sensitivity and accuracy in
detecting individual species using metabarcoding eDNA, which may be
hindered by incomplete reference databases, marker resolution, and
amplification biases, particularly in complex samples from diverse

communities (Briski et al.,2016; Hatzenbuhler et al., 2017; Leray and
Knowlton, 2017). As a result, limited reference database coverage can
decrease the taxonomic resolution of eDNA studies.

4.1. eDNA as a complement data for detecting variety species and
functional traits diversity

These findings reveal that eDNA could be a valuable solution for
detecting a broader range of fish species that visual censuses might miss
due to their procedural limitations related to time and conditions. Visual
censuses can only detect species physically observed by human ob-
servers, and they are often conducted during daylight hours. In contrast,
eDNA detects DNA traces left by animals in their surroundings (Deiner
et al., 2017), which can persist for several hours to days and are
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detectable in water samples (Thomsen et al., 2012; Collins et al., 2019).
Therefore, even though eDNA sampling was conducted only during
daylight in the coral reef ecosystem and in shallow water, it successfully
detected a greater variety of trait diversity compared to visual censuses.
Then, even comparing results from different times in resulting data
(eDNA in August 2022 and visual census in March 2022), both eDNA
and visual census have the same dominance in detecting reef-associated
fish.

This result found that although eDNA has less detecting number of
fish species than visual census in almost all four locations (Fig. 5), except
Taka Malang (core), eDNA could give a new spectrum of species variety
that is not detected yet by the visual census. In this study, at least 60 %
or 86 of the species and 30 % or 12 of the families were produced from
eDNA, which is new and has not yet been listed in the visual census of
four locations in the Karimunjawa islands. eDNA could provide new data
for families (6 of 12; Atherinidae, Carangidae, Engraulidae, Leiogna-
thidae, Nomeidae, and Rachycentridae) living as pelagic fish (Shaffer
and Nakamura, 1989; Zaragoza et al., 2004; Potier et al., 2008; Seah
et al., 2009; de Morais et al., 2016) and families (3 of 11; Spratelloidi-
dae, Gobiidae and Tripterygiidae) living as small and cryptic (Milton
et al., 1991; Tornabene et al., 2013; Esmaeili et al., 2022) that could be
difficult to detect from visual census.

The comparison study between eDNA and visual census has been
implemented under several locations. A study by Marwayana et al.
(2022) compared eDNA and visual censuses to detect fish diversity in
coral reef ecosystems in Raja Ampat. The study revealed that eDNA
could capture new data up to 57.1 % (mean value) of species list that is
not present in visual census results. Another result from detecting fish
species by Munian et al. (2024) that was conducted in freshwater from
Malaysia revealed that eDNA could bring a new species data list to 54 %
that was never listed with the visual census. A higher percentage of the
same detection from eDNA and visual census occurred by Gold et al.
(2021) in the Scorpion State Marine Reserve off Santa Cruz Island, who
found that eDNA could capture 76 % of species and 95 % of genera, the
same as with the visual census. Then, a study conducted by Lee et al.
(2022) showed that eDNA could detect 80 % of the same species with
visual census results in Korea. Nonetheless, this study and the studies
referenced above (Gold et al., 2021; Lee et al., 2022; Marwayana et al.,
2022; Munian et al., 2024) also confirm that eDNA cannot capture the
entire taxon list obtained through visual census. This finding un-
derscores the necessity of combining eDNA with visual census to
maximize the inventory or representation of biodiversity (Muenzel
et al., 2024) from various locations, including conservation areas.

Although eDNA could potentially detect new data sets that have
never been recorded through visual censuses. It also has the capability to
identify a variety of functional traits and diversity. This study found that
eDNA could detect fish with a preference for more varied that not only
reef-associated fish but also pelagic fish, such as demersal, benthope-
lagic, pelagic-neritic, and bathypelagic habitats. This contrasts with vi-
sual censuses, which only detected reef-associated fish species.
Additionally, eDNA identified a greater variety of migratory fish and a
higher number of nocturnal fish than visual censuses. A study from
Aglieri et al. (2021) from the subtidal rocky zone in the Central and the
Western Mediterranean Sea demonstrated a comparable outcome,
indicating that eDNA detection could identify a diverse range of func-
tional traits in fish than other visual methods (underwater visual census
strip transects, baited underwater videos, and small-scale fishery
catches, including those that are facultative or obligate schoolers and
pelagic fish.

4.2. Conservation implication

eDNA analysis has emerged as a valuable tool for conducting
comprehensive biodiversity assessments, particularly for fish. Accurate
taxonomic assignments are crucial because they directly influence the
biotic indices generated and the overall ecological assessments (Cahyani

Regional Studies in Marine Science 81 (2025) 103945

et al., 2024). These assessments are vital for devising effective man-
agement strategies in conservation areas. The use of eDNA enables re-
searchers to detect a wide array of species, including those that are
typically challenging to observe due to factors such as elusiveness,
crypticity, nocturnal habits, or migratory behaviors. Integrating eDNA
analysis and visual census can enhance data accuracy, ensuring a more
exhaustive biodiversity inventory within Marine Protected Areas
(MPAs) like Karimunjawa National Park (KNP) in Indonesia, managed
through a zonation system. Visual censuses have traditionally served as
the primary tool for monitoring marine biodiversity and evaluating
management strategies across different zones within KNP. However, this
study represents the first comparison of eDNA analysis with visual
censuses within the KNP, highlighting the potential of combining these
methodologies to gain a more nuanced understanding of biodiversity
and inform conservation management practices. Moreover, the
cost-effectiveness of eDNA analysis (Munian et al., 2024) enables more
frequent and extensive monitoring endeavors, with the integration of
portable machine sequencing technologies such as Oxford Nanopore
facilitating rapid and scalable data processing.

5. Conclusion

The utilization of eDNA in Karimunjawa National Park (KNP) has
proven to detect 147 fish species across 31 families, showcasing di-
versity and functional traits across four zones: the core zone at Taka
Malang, the protection zone at Menjangan Kecil Island, the tourism zone
at Cilik Island, and open access at Genting Island. Moreover, eDNA
analysis covered 40 % of the same species and 70 % of the same families
as visual census methods. Notably, eDNA analysis revealed a wider array
of functional traits compared to visual census methods, including envi-
ronmental preferences, migratory patterns, and nocturnal behaviors.
Overall, the integration of eDNA analysis alongside traditional visual
censuses offers a promising approach for enhancing biodiversity as-
sessments within Marine Protection Areas like KNP, providing practical
advantages in terms of data processing capabilities, and holding signif-
icant potential for bolstering the effectiveness of conservation efforts.
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