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A B S T R A C T   

Quantifying accurately human impacts on marine ecosystems is key to healthy oceans. While fish production 
from wild stocks has plateaued since the 1980 s, those estimates are primarily drawn from large-scale com-
mercial fisheries, whose boats are routinely monitored using a suite of sophisticated equipment to ensure 
compliance. Smaller vessels, however, especially in developing countries, have not been so rigorously scrutinised 
due to their sheer number and the associated high surveillance cost. This study investigated the viability of using 
low-cost anti-theft devices to detect spatio-temporal patterns of fishing activity in the small- to medium-scale 
snapper fishery of Indonesia. SPOT Trace® GPS tracking units (SPOT, LLC) were deployed on a voluntary, 
participatory basis, on 130 deep water fishing boats ranging from 1.5 to 29 m in length. GPS data were sub-
sequently analysed through a port identification and trip segmentation algorithm, before using spatial clustering 
to automatically identify positions likely associated with fishing events. Through this procedure, we identified a 
total of 2650 fishing trips, whose durations ranged from 4.3 h to 55.3 days. Fishing occurred primarily near 
vessels’ home ports, but also offshore in the Jawa Timur province, and in the Timor and Arafura Sea near the 
Australian Economic Exclusion Zone (EEZ). Adopting this technology as a low-cost alternative to traditional VMS 
could greatly empower monitoring agencies through surveillance of a previously poorly documented stratum of 
the commercial fishing sector, and result in better long-term management of fish stocks and marine resources.   

1. Introduction 

1.1. Global state of fisheries and current issues 

Nearly 10% of the world’s population relies on the seafood industry 
as a source of income, with fish consumption constituting about 17% of 
the global intake of animal protein (FAO, 2020; Islam et al., 2014). The 
world’s annual total fishery capture in 2018 reached a record high of 
96.4 million tonnes, representing over US$150 billion (FAO, 2020). 
While fisheries are critical for food security and appropriate nutrition of 
the world’s growing population, their economic future and viability are 
threatened with 34% of fish stocks currently overfished, 59.6% fully 
fished, and over 1100 threatened or near-threatened fish species on the 
IUCN Red List affected by over-exploitation (FAO, 2020; Maxwell et al., 
2016). Illegal, unregulated and unreported (IUU) fishing is also a 

growing concern for the seafood industry as it is estimated at 26 million 
tonnes of fish annually, i.e. over 20% of global catch (FAO, 2016). While 
some actions such as the 2009 Agreement on Port State Measures to 
Prevent, Deter and Eliminate Illegal, Unreported and Unregulated 
Fishing have been implemented to combat illegal fishing, managing this 
economic and ecological threat remains challenging (FAO, 2020). This is 
partly due to the sheer number of vessels globally – estimated at 4.6 
million in 2018 (FAO, 2020). These vessels use a myriad of ports and 
informal landing sites, with only a fraction of boats covered by sur-
veillance operations through the systematic use of tracking devices. 

1.2. State of Indonesian fisheries 

Asia accounts for 85% of the global population engaged in the fish-
eries sector and 75% of the global fishing fleet, with Indonesia the 
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second largest marine fish producer worldwide (FAO, 2020). Despite 
limited reliable catch data available, Indonesian fisheries are deemed 
fully exploited or over-exploited (Ministerial Decree No. 50/2017 on 
Estimation of MSY, Total Allowable Catch, and Exploitation Rate for fish 
resources in Indonesian Fisheries Management Areas), and lack effective 
harvest controls (Heazle and Butcher, 2007). Furthermore, the govern-
ments of Indonesia are facing high levels of illegal fishing, in particular 
from foreign fishing vessels (Resosudarmo et al., 2009; Wagey et al., 
2009). For instance, industrial illegal fishing in the Indonesian Arafura 
Sea has been estimated to be substantial, approximating 1.5 times the 
area’s legal catch and costing the government about US$2 billion in lost 
revenue (Resosudarmo et al., 2009; Varkey et al., 2010). Lastly, reported 
catch rates for the country (8% of global marine captures, representing 
6.7 million tonnes in 2018) are likely underestimated, partly because of 
the predominance of small-scale fishing fleets and the large number of 
scattered landing sites (FAO, 2020). Indeed, while the livelihood of up to 
90% of the capture fishery workforce depends on small-scale fisheries, 
getting accurate catch figures is notoriously difficult as boat registration 
is often not required nor reported in official statistics and those vessels’ 

areas of operation are typically remote, as is the case for Indonesia’s 
deep water snapper fishery (FAO (2020); Halim et al., (2020, 2019)). 

1.3. Indonesia’s deep water snapper fishery 

Indonesia’s deep water snapper fishery targets snappers Lutjanidae, 
groupers Serranidae, grunts Haemulidae, emperors Lethrinidae, croakers 
Sciaenidae and co-occurring species at depths ranging between 50 and 
500 m (Amorim et al., 2020). There are over 100 species regularly 
caught in these fisheries, but the bulk of the catch is much less diverse 
with 60% of catch volume consisting of only 11 snapper species. The 
most common gears are drop lines and bottom-set longlines, and less 
common are baited traps and gillnets, set either deep or vertical along 
outer reef walls. The snapper fleet in Indonesia includes close to 11,000 
fishing boats, representing a total annual catch in 2020 of around 120, 
000 metric tons, with retail value amounting to about $US 1.2 billion 
(Mous et al., 2021). Fishing vessels range from powered canoes of less 
than 1 GT, which make day trips, to larger vessels measuring close to 
100 GT and making trips of up to six months. Fishing grounds are spread 
out over the entire Indonesian archipelago but the most important ones 
in terms of volume are broadly distributed in the Indonesian part of the 
South China Sea, the Java Sea, and the Indonesian part of the Arafura 
Sea. An assessment of the global trade in snappers is hampered by lack in 
granularity in catch statistics (Cawthorn and Mariani, 2017), but 
Indonesia is the world’s leading producer of snappers (FAO, 2020). 

1.4. Understanding spatio-temporal patterns in fishing effort 

A thorough understanding of fishing practices and catch composition 
is critical to implement efficient management policies, and several 
technologies are already available to estimate and monitor fishing effort 
at a fine scale remotely. Automatic Identification System (AIS) and 
Vessel Monitoring System (VMS) data may help identify vessels’ fishing 
locations, anchorages and ports, along with trans-shipment events. VMS, 
in particular, is routinely used in many fisheries to monitor vessels in 
protected areas or to assess days at sea against fishing quotas (Chang and 
Yuan, 2014; Harrington et al., 2007; Maina et al., 2018; Marrs et al., 
2002; Muench et al., 2017). Inferring fishing activity solely from vessel 
location recorded at given time intervals nonetheless remains an 
analytical challenge (Lee et al., 2010; Russo et al., 2014; Watson and 
Haynie, 2016). Such predictions require complex statistical models that 
account for several types of covariates (e.g. location-derived metrics, 
bathymetry, distance from shore, port identification) and are often 
further complicated by the crew’s ability to turn transponders off 
(Muench and others, 2017; Peel and Good, 2011). Furthermore, VMS 
equipment and communications remain expensive (several thousands of 
$US) and thus not viable economically to be deployed on all fishing 

vessels. This is particularly problematic in developing countries for 
monitoring large small-scale fishery fleets and understanding how 
fishing is distributed spatially and temporally. 

1.5. Objectives 

Here, we report on the feasibility of mapping and quantifying 
accurately fishing effort for small fishing vessels operating in Indonesia’s 
deep water snapper fishery from a low-cost VMS alternative that is 
typically used as personal asset tracking devices. Using this technology, 
our main objective was to discriminate and quantify vessel behaviour 
through an automated analytical framework and understand what fac-
tors may be driving the spatial distribution of fishing activity. Addi-
tionally, we investigated transponder shutdown events to gain insights 
into potential patterns of non-compliance. 

2. Methods 

2.1. Data collection 

In 2014 The Nature Conservancy (TNC) initiated its opt-in Indonesia 
Fisheries Conservation Program by deploying SPOT Trace® GPS re-
ceivers (~$100 USD each, plus $140 USD annual subscription fees; Spot 
LLC, Covington, LA) on 130 small- to medium-scale fishing vessels, 
ranging from 1.5 to 29 m in length and between 1 and 81 in gross 
tonnage. SPOT Trace devices use the Globalstar satellite constellation 
and are designed to record GPS locations (median location error of 
~8–10 m) only when detecting movement to save battery for long-term 
monitoring. On the water, where constant vibrations may cause false 
tracking events, SPOT Trace transmitters use their vibration sensor and 
compare consecutive GPS readings to determine if a boat is actually 
moving. When stationary for over five minutes, transmitters suspend 
their functions until activity is resumed, i.e. defined by showing two 
readings more than 200 m apart, and send a message advising that 
movement has momentarily stopped. GPS sampling nominal intervals 
may range from 2.5 to 60 min, the latter being the typical configuration 
used in this study (Lehrke et al., 2017). 

All GPS locations are subsequently transmitted to communication 
satellites before being relayed to ground stations for processing, storage, 
and online publication. To provide long-term archiving of SPOT Trace 
data, catch composition and operational details of fishing trips, TNC 
developed I-Fish, a private database information system that can be 
queried by boat captains, boat owners, and policy makers to improve 
Indonesian fishery management (http://ifish.id/?q=id/content/about, 
last accessed 7 May 2021). 

2.2. Data pre-processing 

We first extracted GPS data from the I-Fish database and all metadata 
for registered boats (e.g. size, tonnage, home port geographical co-
ordinates obtained through the world seaports catalogue http://ports. 
com/, last accessed 17 March 2020). We then cleaned the resulting 
dataset by removing duplicates, discarding data for short deployments 
(< 10 locations), and deleting points on land using high-resolution 
geographic data of the world’s coastline through the Global Self- 
consistent Hierarchical High-resolution Geography, GSHHG website 
(https://www.soest.hawaii.edu/pwessel/gshhg/, last accessed 7 May 
2021) (Wessel and Smith, 1996). Since SPOT Trace devices do not 
provide any geographical coordinates when trackers are turned off 
either voluntarily or due to empty battery (known as ‘Power-off’), we 
assigned to those messages the latitude and longitude of the closest 
message in time. We discarded positions associated with consecutive 
‘STATUS’ messages as SPOT Trace trackers send those when no activity 
is recorded for extended time periods. We then computed for each 
deployment the median time interval between consecutive messages to 
determine each tracker’s sampling interval based on default 
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manufacturing nominal sampling intervals (i.e. 2.5, 5, 10, 30, or 60 
min). This calculation was required to interpolate spatio-temporal co-
ordinates for positions associated with ‘STOP’ messages, during which 
vessels remain momentarily immobile, and thus may be fishing. 

2.3. Port identification and trip segmentation 

Prior to segmenting tracking datasets into individual fishing trips, we 
first had to infer port locations for each vessel. We computed for each 
vessel position the distance to the nearest coastline and to the nearest 
port, based on a list of 538 ports registered with the Indonesian 
Department of Fisheries. To identify vessel start and end ports for each 
individual trip we selected the first and last five GPS positions associated 
with distances to the nearest port of less than 20 km. We then identified 
for those subsets of points the neighbouring port with the maximum 
number of occurrences, or the one associated with the shortest distance 
in case of equal counts. All positions within 2 km of a port were assigned 
by default as being in port to account for potential inaccuracy in port 
geographical coordinates and because fishing within such a short dis-
tance from ports was unlikely due to the 50–500 m depth range at which 
snapper fishing occurs. Besides, waters this close to ports are most likely 
fished out due to their ease of access and we expect that, if fishing does 
indeed occur in such proximity to port, the effort is certainly marginal 
compared to the general fishing pattern of the fleet as corroborated 
visually during data exploration. 

Once ports were identified, we segregated each vessel’s tracking 
dataset into individual fishing trips. To do so, we computed the second 
derivative for the ‘distance to port’ metric (e.g. rate of change in distance 
in relation to port for consecutive messages), thereby allowing us to 
identify directional changes and inflection points at which vessels star-
ted moving towards or away from their port. We recorded the start and 
end dates for each fishing trip based on when that second derivative 
became positive within 2 km from port, the radius within which all 
positions were considered as being in port. 

2.4. Vessel behaviour identification 

To discriminate vessel behaviour (i.e. at port, steaming, or fishing), 
we computed and extracted metrics for each position including: dis-
tance, speed and bearing angle between consecutive locations, seafloor 
depth using the GEBCO one minute bathymetry grid (https://www. 
gebco.net/data_and_products/gridded_bathymetry_data/gebco_one_mi-
nute_grid/, last accessed 7 May 2021), distance to the nearest Exclusive 
Economic Zone (EEZ) boundary (negative if within an EEZ other than 
Indonesia’s), and the Indonesian Fisheries Management Area (FMA) in 
which each position was recorded. 

To identify GPS positions associated with fishing activity we then ran 
for each vessel a density-based multivariate spatial clustering analysis 
using the dbscan package in R using latitude, longitude and speed 
(Hahsler et al., 2019; R Core Team, 2016; Zhang et al., 2018). This 
procedure required us to select a suitable value of the epsilon neigh-
bourhood, which we set at 0.25 as determined visually by quantifying 
the location of the knee (i.e. the point of maximum curvature) when 
plotting the k-nearest neighbour distances for each vessel’s tracking 
dataset. Our algorithm then classified positions as ‘fishing’ when they 
belonged to geographical clusters characterised by mean speeds < 5 km. 

h-1. All other points were classified as ‘steaming’ unless within 2 km of 
port, in which case vessel behaviour was assigned as ‘at port’. Due to the 
absence of observers on board, AIS device, or other concomitant reliable 
and accurate catch data, we were unfortunately unable to validate our 
vessel activity predictions. Photographs were taken after catches were 
brought in for some vessels, however metadata for those images only 
included date and not time, thus preventing us from cross-referencing 
against predicted fishing events. Despite the lack of validation data-
sets, we are confident of the quality of our vessel behaviour predictions 
as we visually ascertained extensively the validity of our approach, and 
also because this dbscan spatial clustering approach has been used 
successfully many times historically in a fishery context (Mazzarella 
et al., 2014; Ramadhani and Fitrianah, 2019; Su and Chang, 2008). 

We then computed summary statistics to identify patterns in fishing 
effort including number of trips per tracker deployment, trip and fishing 
event durations, distance travelled, maximum distance from port, and 
number of FMA visited. For each boat, we also calculated the minimum 
distance from each GPS position associated with fishing to previous 
fishing locations thus providing insights into fidelity and thus quality of 
fishing grounds. 

2.5. Spatial analysis 

To predict the geographical distribution in fishing activity and un-
derstand what factors may be influencing vessel operators to choose 
certain fishing grounds, we used a spatial generalised additive model 
(GAM), implemented through the mgcv library in R using a Tweedie 
exponential family for continuous non-negative data clumped at zero 
(Wood, 2017). Our intention was also to assess the relative influence of 
the following variables on vessel speed, a suitable proxy for fishing 
distribution for drop lines and bottom longlines when outside of ports: 
seafloor depth, distance to coast, distance to port, distance to EEZ, and 
distance to fishing grounds previously fished. In particular, the ‘distance 
to EEZ’ explanatory variable was added to the model to test the 
assumption that, for a subset of the snapper fleet, fishing may happen 
preferentially near that maritime boundary, either for 
compliance-related reasons or because of the intrinsic health of those 
distant fishing grounds. We ensured that our model was able to output 
stable regression estimates with low standard errors by applying a 
multicollinearity test between variables through computing the variance 
inflation factor using the ‘olsrr’ R package (Aravind, 2020). While we 
originally explored a variety of other predictor variables, we only pre-
sent hereafter the best performing model as identified by multi-model 
inference, based on information theoretic, i.e. Akaike’s Information 
Criterion (Burnham and Anderson, 2002).  

where speed is vessel speed. The term te(Longitude, Latitude) refers to a 
tensor product smooth fitted over a two-dimensional spatial surface, 
while other smoothing functions were thin-plate regression. Unfortu-
nately, because of mostly incomplete boat metadata records in I-Fish, 
none of the vessels’ characteristics (length, gross tonnage) could be 
incorporated in the above model. To quantify spatially fishing effort, we 
(1) ran a grid analysis, summing fishing duration across all vessels 
within each 0.5◦ x 0.5◦ cell, and (2) calculated the proportion of tracker 
deployments and fishing effort in each region of the Indonesian archi-
pelago, as segmented geographically by Spalding et al. (2007). 

tw(speed) = te(Longitude,Latitude)+ s(Seafloor depth)+s(Coast distance)+ s(Port distance)+s(EEZ distance)+ s(Distance previous fishing location)
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3. Results 

3.1. Data pre-processing 

We extracted 185,585 GPS locations from the I-Fish database, 
collected from 294 individual deployments of SPOT Trace devices be-
tween October 2014 and December 2016, with an average deployment 
duration of about three months (mean ± SD = 99.4 ± 87.3 days, max =
605.6 days). Removing all duplicate locations along with points on land 
resulted in a dataset of 170,880 GPS locations across 278 tracker de-
ployments. Metadata on boat length, gross tonnage and home port was 
only available for 25.8%, 9.5%, 39.5% of those deployments respec-
tively, and showed SPOT Trace units were deployed on 114 distinct 

fishing vessels registered in 27 different Indonesian ports. Those boats 
were characterised by an average length of 13.9 m (SD = 4.6, range =
4.0 – 29.0 m), a mean gross tonnage of 26.7 GT (SD = 15.4, range = 1.0 – 

81.0 GT). For boats whose port of origin was unknown, our algorithm 
inferred 26 distinct landing sites that might have been used. All ports 
ranged from 113.2◦ to 136.8◦E and from 10.9◦S to 1.7◦N and encom-
passed several provinces including Jawa Timur, Bali, Nusa Tenggara 
Barat, Nusa Tenggara Timur, Sulawesi Utara, Maluku Utara and Papua 
Barat (Fig. 1). Most tracker deployments (60.2%) occurred on vessels 
originating from the Lesser Sunda region encompassing Bali, Nusa 
Tenggara Barat, and Nusa Tenggara Timur, while another 26.6% and 
11.6% of trackers were deployed on boats whose ports of origin were in 
the Sulawesi and Banda regions respectively. Boats operating in this 

Fig. 1. Map of the study area encompassing the seas, and islands of Indonesia, Borneo, Papua, and northern Australia, built using ggmap in R (Kahle and Wickham, 
2013). Vessel ports are indicated by red squares, GPS positions inferred as fishing as orange dots, and ship tracks as orange lines. EEZ boundaries are represented by 
white lines. 
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deep water snapper fishery travelled primarily by following island 
coastlines in the South of the Indonesian archipelago and the seas 
around Maluku. They also displayed extensive offshore movements and 
fishing effort in all Indonesian seas, except in the Banda Sea where those 
activities were more limited and transient (Figs. 1, 4 and 5). 

3.2. Vessel behaviour 

Our track segmentation algorithm (Fig. 2) identified 2650 individual 
fishing trips, whose durations ranged from 4.3 h to 55.3 days (mean 
± SD = 4.1 ± 5.8 days). The mean distance travelled per trip was 
287.7 km (SD = 557.1 km) while the average farthest distance from port 
was 126.7 km (SD = 264.7 km), with two thirds of trips (67.3%) 
occurring within a single FMA. The larger a vessel’s gross tonnage, the 
more it exhibited a tendency to have long trips far from port. For small- 
scale vessels (<= 10 GT) the mean ± SD trip duration and maximum 
distance from port were respectively 0.8 ± 0.8 days and 10.8 ± 6.5 km, 
while the same summary statistics for medium-scale boats (> 10 GT) 
were 8.1 ± 10.1 days and 301.1 ± 423.5 km. Through our spatial clus-
tering approach, we identified fishing events with 2471 of those 2650 
trips (93.2%), with a mean ± SD fishing duration of 2.1 ± 3.7 days, 
encompassing 44.5% of the total trip duration on average. Fishing pri-
marily took place in relatively shallow waters (mean depth = 176.1 m, 
1st and 3rd quartile = 43 and 112 m respectively), with half of all fishing 
events located within 20 km of land (mean ± SD distance from nearest 
shore = 62.5 ± 69.5 km). We observed a dichotomy in operating 
behaviour between vessels of lengths < = 7 m and those above, with the 
caveat that our results for the former group may not be representative of 
the overall fleet for this category due to limited sample size (n = 39 
fishing events across 2 vessels vs. 1869 fishing events across 60 vessels 
respectively). Both fishing distance from land and trip duration were 
indeed markedly lower for vessels < = 7 m long, with mean ± SD values 
for these two variables of 4.5 ± 4.1 km and 36.6 ± 22.2 days compared 

to 46.6 ± 65.8 km and 91.4 ± 138.1 days for longer boats. Three 
offshore regions were intensively fished: the Jawa Timur province, the 
Timor Sea (including within the Australia/Timor EEZ), and the Arafura 
Sea along the Australian EEZ (Fig. 1). Vessels whose home ports were 
close to the Australian EEZ were more likely to fish close to it, as 
demonstrated by a linear relationship between these two variables (R2 =
0.66). However, boats from ports up to 800 km away also fished close to 
the Australian EEZ border (Fig. 3). This sample of the Indonesian 
snapper fleet exhibited strong spatial fidelity to previously visited fish-
ing grounds, with a median distance to previous fishing locations of 
2.9 km (mean ± SD = 43.0 ± 137.2 km). 

3.3. Spatial analysis 

Our spatial GAM fitted on vessel speed using a Tweedie family 
returned a power of 1.99 indicating a Gamma distribution, and 
explained 26.2% of the deviance observed (Table 1). The coefficients 
that explained most of the deviance were the spatial interaction term (i. 
e. latitude/longitude, 11.4%), distance to port (7.3%), and seafloor 
depth (3.8%), with the distance to an EEZ boundary only accounting for 
0.8%. This spatial modelling approach showed low speed near ships’ 

home ports (Fig. 4). The Banda Sea experienced little boat traffic (Fig. 1) 
while other areas, including the Java, and Timor Seas, attracted large 
numbers of vessels which exhibited slow speed movements likely due to 
fishing events (Figs. 1 and 4). Furthermore, examining fishing event 
distribution at the regional level revealed some geographical discrep-
ancies in how vessels operate. Boats from Nusa Tenggara primarily 
fished around the Timor coast, and further South in the Timor Sea, 
particularly along the Australian EEZ and in the joint regime Australia – 

East Timor EEZ area (Figs. 1 and 4). While vessels from Bali and Jawa 
Timur provinces also fished near the Australian EEZ and in that joint 
regime, their primary fishing grounds were in the Java Sea, North of Bali 
and South off West Nusa Tenggara (Figs. 1 and 4). Fishing by boats 

Fig. 2. Example of outputs of the track segmentation algorithm applied to GPS positions from a SPOT Trace tracker deployed on a vessel fishing off the island of Nusa 
Tenggara Timur, Indonesia. Left – distance from identified port as a function of time, with the horizontal blue dashed line representing the threshold distance below 
which a vessel is considered as being in port (5 km). Solid vertical red lines indicate breaks in the time-series data based on inflection points, while coloured 
rectangles show individual fishing trips considered valid for subsequent spatial and statistical analyses. Right – Map of the vessel track with distinct valid fishing trips 
colour-coded according to the left panel, with vessel port represented by a red cross, and bathymetric data, at a resolution of 1′ from the ETOPO1 Global Relief Model 
shown, including the 1000 and 2000 m isodepth contours. 
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originating from the Sulawesi Utara and Maluku provinces mainly took 
place close to port, although substantial fishing activity occurred in the 
Celebes Sea and in the Banda Arc (Figs. 1 and 5). Boats from Papua Barat 
fished close to port, though fishing also occurred near the Australian EEZ 
boundary in the Arafura Sea (Figs. 1, 4 and 5). Fishing effort was 
consistent with the provenance of vessels. The most intense activity 
occurred in the Sunda region (South of Bali, Nusa Tenggara Barat, Nusa 
Tenggara Timur) encompassing 42.6% of all fishing events’ duration, 
followed by 18.2% and 15.1% in the Sulawesi and Banda Sea North of 
Maluku respectively (Fig. 5). 

4. Discussion 

4.1. SPOT Trace: a suitable low-cost technology to investigate fishing 
effort 

This pilot project demonstrated that SPOT Trace trackers can be used 
as a low-cost VMS substitute. We were, indeed, able to quantify the 
spatial distribution and intensity of fishing in a subset of the Indonesian 
snapper fleet, using an automated procedure encompassing port iden-
tification, trip segmentation and spatial clustering algorithms. Through 
GPS data acquired by SPOT Trace devices, it is possible to gain a detailed 
understanding of how unregulated fisheries operate, and eventually 
estimate the number of fishing days which is notoriously difficult to 
derive for such dispersed fisheries (FAO, 2020). Documenting the 
spatio-temporal use of fishing grounds is also critical to determine 
accurately how much pressure is being put on marine ecosystems and 
stocks. Such information is particularly lacking for developing countries 
with fishing fleets exempt from fishery management instruments as 
monitoring activities and regulations are typically fewer than for 
developed nations (FAO, 2020). Nevertheless, while we visually ascer-
tained by looking at predictions from our spatial clustering approach 
that SPOT Trace is a suitable technology for classifying vessel activity 
and subsequently derive fishing-related metrics, we could not quantify 
the accuracy of our behavioural predictions due to the absence of 
concomitant information. This validation step, using catch data (e.g. 
timestamped photos of catch when fish are brought on board, logbook, 
observer, or electronic monitoring records), is essential to estimate the 
error rate associated with our fishing prediction algorithm and compare 
its accuracy against other analytical approaches, such as random forest 
models, which have been previously used on datasets collected from GPS 
trackers deployed on small-scale fisheries (Behivoke et al., 2021). While 

Fig. 3. Propensity to fish near the Australian EEZ for boats whose home port’s closest EEZ border was Australia’s.  

Table 1 
Parameter estimates and significance of the spatial generalised additive model 
(GAM) for vessel speed. SE = standard error; CI = confidence interval; df 
= degree of freedom. Note that values for coefficient, SE and t-value are not 
available for smoothing terms.  

Parameter Coefficient SE t- 
value 

df p-value 

Parametric terms 
Intercept 1.139  0.004  289.5  1 < 0.001 
Smoothing terms 
Longitude, latitude  29 < 0.001 
Seafloor depth  9 < 0.001 
Coast distance  9 < 0.001 
Port distance  9 < 0.001 
EEZ distance  9 < 0.001 
Distance previous fishing 

location  
9 < 0.001  
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using SPOT Trace units for monitoring vessel behaviour and quantifying 
fishing effort may be far-reaching due to its low cost, we foresee that its 
main application would be in developing countries on commercial 
vessels not equipped with traditional VMS hardware. Moreover, using 
similar analytical techniques, there is potential to expand this scope to 
subsistence and recreational fishing as both remain largely unquantified 
(FAO, 2020). SPOT Trace units, however, do have limitations, particu-
larly their short battery life of only 14–30 days period when using hourly 
or at higher frequency (Natsir et al., 2019). The required routine oper-
ation of battery changing may also be detrimental to the watertight 
rubber seal between the battery compartment and the mother board, 

thus compromising the device’s integrity and reliability. SmartOne Solar 
(Globalstar, Covington, LA) constitutes an alternative, solar-powered, 
personal tracker solution enhanced functionalities compared to SPOT 
Trace devices (albeit three times more expensive), with better durability 
of up to ten years along with a special switch to prevent the unit being 
turned off. 

4.2. Voluntary data to understand risk and identify potential violations 

We observed three contexts in which SPOT Trace tracking devices 
revealed patterns that are of relevance for compliance. First, while the 

Fig. 4. Colour gradient contour plot of modelled vessel speed in km.h-1 as predicted by fitting a spatial generalised additive model to SPOT Trace GPS coordinates 
using a Tweedie exponential family. Vessel speed, a proxy for fishing distribution, is colour-coded so that low speeds are shown in blue, while high speeds are in red. 
Latitude and longitude were included as a smoothed interaction term, conditional on vessels not being in ports, to account for non-linear spatial heterogeneity. Port 
locations and EEZ boundaries are respectively represented by red squares and thin black lines. 
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majority of fishing trips took place in a single fishery management area, 
one third encompassed two or more of those areas. This behaviour 
demonstrates that operators rely on multiple fishing grounds within a 
season and therefore do not necessarily comply with regulations 
requiring them to fish solely within their designated management area 
(s). Second, there was an abundance of vessels fishing near the the 
Australian EEZ boundary. There is a history of compliance issues in this 
region, with unauthorized vessels crossing into Australian waters to fish 
(Edyvane and Penny, 2017; Vince, 2007). Tracking devices clearly 
showed a high risk of this pattern in a particular section of the border 
south of Timor. Third, power-off messages may sometimes indicate an 
intent to knowingly violate fisheries regulations. For instance, our 
tracking data showed an obvious cluster of voluntary power-off mes-
sages from vessels operating along the Australian EEZ border. 

However, there are a number of limitations with using a voluntary 
tracking system as a compliance tool. First, there must be an incentive 
for fishers to participate. For instance, the complementary communi-
cation and safety function of the SPOT Trace device is a privilege that 
vessel operators may lose if their tracking units fail to provide data (e.g. 
due to insufficient care or frequent ‘Power-off’ messages). Second, any 
compliance estimates may be overinflated, as non-compliant vessels are 
much less likely to participate. While the frequency of fishing at the 
Australian border and power-off messages are particularly high for 
Timor-based vessels, which aligns with historic non-compliance obser-
vations, this pattern may not represent the picture that would emerge if 
all vessels were tracked. Indeed, as vessel operators volunteered to 
participate in this program, there may be a substantial selection bias, 
making it difficult to estimate how representative the activity we 

Fig. 5. Total fishing duration (hours) for the Oct. 2014 – Dec. 2016 period per 0.5◦ grid cell. EEZ boundaries are represented by thin black lines.  
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observed is in relation to the entire deep water snapper fleet. 

4.3. Spatial distribution of fishing effort deep water snapper fleet 

Fishing for the Indonesian snapper fishery primarily occurred a short 
distance off islands, and in the Java, Timor, and Arafura Seas. This 
distribution of effort may be explained by the fact that (1) the snapper 
fishery uses handlines, droplines and bottom longlines between depths 
of 50–500 m, and (2) operators try to minimise travel from port to 
reduce fuel consumption. What is remarkable though is the fishing in-
tensity in the offshore regions mentioned above, attracting vessels from 
distant provinces. Such long-distance trips imply that it may be more 
beneficial economically for operators from certain ports (e.g. Jawa 
Timur, Bali) to use large volumes of petrol than to fish locally. This 
spatial distribution may reflect the potentially depleted state of snapper 
stocks, at least in some coastal parts of the Indonesian archipelago 
(Amorim et al., 2020). Alternatively, the quality of such offshore fishing 
trips may be higher than their coastal counterparts, thus outweighing 
the comparatively expensive travel-related cost. Social research 
involving surveys of fishermen and accounting for boat characteristics 
(GT, gear type) and species’ historical spatiotemporal distribution or 
expected habitats could help establish whether fishing distance from 
port is indicative of stock health for target species. Similarly, linking 
data on fish size, species composition, and catch rates with fishing trip 
distance and effort could indicate whether tracking data may be used to 
compile an inexpensive index of stock status on individual reefs. 

On a positive note, in this study, vessels were typically at sea for a 
few days, travelling relatively small distances (median distance travelled 
per trip = 59.7 km) and fishing mostly close to port. These statistics, 
along with the high level of spatial fidelity to fishing grounds vessel 
operators demonstrated, most often returning to fish within 20 km of a 
previous fishing event, may indicate that the majority of coastal waters 
in our study area still contains suitable snapper fishing grounds for 
viable commercial exploitation. Spatial patterns are insufficient, how-
ever, to draw definite conclusions on stock status thus further assess-
ments are required to test our hypothesis. The primarily coastal fishing 
behaviour we observed may, alternatively, be an artifact of our sampling 
regime. The latter, while unfortunately largely unknown to us, may have 
been biased towards deploying preferentially trackers on small vessels, 
which almost exclusively exploited inshore waters compared to boats 
whose lengths were greater than seven metres and ventured markedly 
further offshore. Moreover, given the substantial number of vessels 
operating in the Indonesian snapper fishing fleet (close to 11,000 boats 
in 2020) and our reduced sample size of 114 vessels, the representa-
tiveness of our results is inherently questionable. Our findings, indeed, 
rather serve to reveal general, nation-wide fishing patterns and 
demonstrate the applicability of our experimental approach for fishery 
management and surveillance purposes than unveil the granularity in 
operations at different spatial scales across multiple gear types and 
vessel characteristics. The archipelago-wide transiting practices of 
snapper fishers observed in this study should, nevertheless, act as a 
reminder that fish resources are limited and that operators may readily 
abandon their traditional fishing grounds if depleted to reach new, 
farther fishing grounds in the hope of improving catch rates. Without 
appropriate policing, management and innovative low-cost monitoring 
tools like SPOT Trace, the future of the Indonesian snapper fishing in-
dustry may indeed change from a once coastal-restricted fishery to a 
strictly offshore one involving higher risks, increased transport cost and 
emissions, and reduced profitability, as already observed in many fish-
eries around the world (Rousseau et al., 2019). 
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